More than 100 chemical elements—substances that cannot be decomposed or broken into more elementary substances by ordinary chemical means—are known to exist in the universe. However, several of these elements, such as the so-called transuranium elements, have not been found in nature and can only be produced artificially.
Russian chemist Dmitry Ivanovich Mendeleyev and German physicist Julius Lothar Meyer independently developed the periodic law of the chemical elements at about the same time in the late 19th century. Mendeleyev is generally credited with the findings, because he established the periodic law in 1869, and Meyer established this chemical law in 1870. Both discovered that arranging the elements in order of increasing atomic mass produced a table of chemical properties and reactivity patterns that were regularly repeated. This phenomenon—known as the periodic law—is most often represented in the periodic table of the elements (see Atom).
A. Elements
Hydrogen, oxygen, chlorine, sodium, and iron are examples of elements. Elements cannot be resolved into simpler substances by ordinary heat, light, electricity, or attack by other substances. To say that elements can never be broken down would not be accurate, but breaking them down takes millions of times more energy than can be applied by ordinary means. It requires either special equipment, such as a particle accelerator, or temperatures like those in the interior of the sun. An element can therefore be defined as a substance that cannot be broken down into simpler substances by ordinary means.
Ninety elements are known to occur in nature, and 22 more have been made artificially. Out of this limited number of elements, all the millions of known substances are made.
Abbreviating the names of the elements is often convenient. For each element, a symbol has been chosen that consists of one or two letters. The symbols are derived from the names of the elements; for example, H stands for hydrogen, He for helium, C for carbon, and so on. The abbreviations are not always derived from the English names, however. The symbol Fe for iron comes from the Latin ferrum, and W for tungsten comes from the German wolfram. These symbols are internationally recognized and are used even by people whose native languages do not use the Roman alphabet, such as Russian and Japanese.
B . Compounds
Water Molecule
H - O-H
Water is an example of a compound. A water molecule consists of an oxygen atom and two hydrogen atoms.
Salt, water, iron rust, and rubber are examples of compounds. A compound is made up of elements, but it looks and behaves quite differently, as a rule, from any of its component elements. Iron rust, for example, does not look and feel like its components: oxygen gas and iron metal. Some synthetic fabrics, with fibers made from coal, air, and water, do not feel at all like any of the components that make them up. This individuality of properties, as well as other qualities, distinguishes a compound from a simple mixture of the elements it contains. Another important characteristic of a compound is that the weight of each element in the compound always has a fixed, definite ratio to the weight of the other elements in the compound. For example, water always breaks down into 2.016 parts of hydrogen by weight to 16.000 parts of oxygen by weight, which is a ratio of about 1 to 8, regardless of whether the water came from the Mississippi River or the ice of Antarctica. In other words, a compound has a definite, invariable composition, always containing the same elements in the same proportions by weight; this is the law of definite proportions.
Many elements combine in more than one ratio, giving different compounds. In addition to forming water, hydrogen and oxygen also form hydrogen peroxide. Hydrogen peroxide has 2.016 parts of hydrogen to 32 parts of oxygen; that is, 1.008 parts of hydrogen to 16 parts of oxygen. Water, as stated above, has 2.016 parts of hydrogen to 16 parts of oxygen. The figure 2.016 is twice 1.008. This example illustrates the law of multiple proportions: When two elements combine to form more than one compound, the element whose mass varies combines with a fixed mass of the second element weights in a simple whole-number ratio such as 2:1, 3:1, or 3:2.
No comments:
Post a Comment